ON BANACH SPACES WHOSE DUAL BALLS ARE NOT WEAK* SEQUENTIALLY COMPACT

BY

J. HAGLER AND W. B. JOHNSON*

ABSTRACT

THEOREM 1. Let X be a Banach space. (a) If X^* has a closed subspace in which no normalized sequence converges weak^{*} to zero, then l_i is isomorphic to a subspace of X. (b) If X^* contains a bounded sequence which has no weak^{*} convergent subsequence, then X contains a separable subspace whose dual is not separable.

The common feature in the proofs of (a) and (b) of Theorem 1 is a diagonalization argument similar to that of Nissenzweig [5]. Nissenzweig's main result, that every conjugate Banach space contains a normalized sequence which weak* converges to zero, is a consequence of Corollary 1. (This result was also proved by Josefson [3a].)

COROLLARY 1. If l_1 is isomorphic to a subspace of X^* , or if the unit ball of X^* *is not weak * sequentially compact, then either* $c₀$ *is isomorphic to a quotient of X or* l_1 is isomorphic to a subspace of X.

One derives Nissenzweig's result from Corollary 1 as follows: If X^* contains no normalized weak* null sequence, then the unit ball of X^* is not weak* sequentially compact. Thus either c_0 is a quotient of X, or, if l_1 embeds into X, l_2 is a quotient of X by a result of Pe χ czyński's [6]. At any rate, X has a separable quotient, which implies that X^* contains a normalized weak* null sequence.

In view of a theorem of Stegall [8], we can restate Theorem 1 (b) as

COROLLARY 2. If X^* has the Radon-Nikodym property, then the unit ball of *X* is weak* sequentially compact.*

* The second-named author was supported in part by NSF-MPS 72-04634-A03. Received August 2, 1976

Haydon $[2]$ has recently given an example of a compact Hausdorff space K which is not sequentially compact such that $l_1(\Gamma)$ does not embed in $C(K)$ for any uncountable set F. It is not known, however, if the hypothesis of Theorem 1 (b) implies that l_1 embeds in X.

NOTATION. Unexplained notation is standard and can be found in [1] or [4].

All Banach spaces are real. For a Banach space X , B_x denotes the closed unit ball of X. If D is a subset of X, then $[D]$ is the closed linear span of the set D in X. If X and Y are Banach spaces, then $(X \oplus Y)_1$ is the Banach space $(X \times Y, || ||)$, where $|| (x, y) || = ||x|| + ||y||$.

Next, let T denote the set of finite sequences of 0's and 1's. For $\varphi \in T$, $|\varphi|$ denotes the length of the sequence φ . If $\varphi, \psi \in T$, then $\varphi \geq \psi$ if $|\varphi| \geq |\psi|$ and the first $|\psi|$ terms of φ form the sequence ψ . If $|\psi| = n$ and $i = 0$ or 1, then ψ , i is the unique sequence of length $n + 1$ whose first n terms form the sequence ψ . Also, let Δ denote the set of infinite sequences of 0's and 1's. Then to each $\xi \in \Delta$ we can associate a unique sequence (φ_n) in T, where for each $n \ge 0$, the first n terms of ξ form the sequence φ_n .

PROOF OF (a) OF THEOREM 1. Let (f_n) be a normalized basic sequence in X^* such that no normalized sequence in $[f_n]$ converges weak* to zero. Then by Rosenthal's characterization of l_1 -sequences [7], we can assume that (f_n) is equivalent to the usual basis of l_1 .

First, we may assume that (f_n) is isometrically equivalent to the usual basis of l_1 . To see this, observe that l_1 imbeds in X if and only if l_1 imbeds in $(X \oplus c_0)_1$. If (h_n) denotes the usual basis for $l_1 \cong c^*_{o}$, then the sequence (f_n, h_n) in $(X \oplus c_0)^*$ is isometrically equivalent to the usual basis of l_1 and there is no normalized sequence in $[(f_n, h_n)]$ which tends weak* to zero.

Now, let (g_n) be any sequence in a Banach space isometrically equivalent to the usual basis of l_1 . Then a sequence (h_n) is called an l_1 -normalized block of (g_n) (in short, a *block*) if $h_n = \sum_{i \in A_n} \alpha_i g_i$ where the A_n are pairwise disjoint finite subsets of the integers and $\Sigma_{i \in A_n}$ α_i = 1. It is clear that every block (g_n) of (h_n) is isometrically equivalent to the usual basis of l_1 .

For a block (g_n) of our original sequence (f_n) in B_{x} , define $\delta(g_n)$ = $\sup_x \limsup_n g_n(x)$ where the sup is taken over all $x \in B_x$. Also define

 $\varepsilon(g_n) = \inf{\delta(h_n) : (h_n)$ is a block of (g_n) .

It is clear that $\delta(g_n) > 0$ and if (h_n) is a block of (g_n) , then $\delta(h_n) \leq \delta(g_n)$ and $\varepsilon(h_n) \geq \varepsilon(g_n)$.

We claim that there exists a block (g_n) of (f_n) such that $\varepsilon(g_n)=\delta(g_n)$, i.e.

Vol. 28, 1977 BANACH SPACES 327

 $\delta(h_n) = \delta(g_n)$ for any block (h_n) of (g_n) . Indeed, we can pick a block (g_n) of (f_n) such that $\delta(g_n^1) < \varepsilon(f_n) + 2^{-1}$, and, inductively, we can pick blocks (g_n^k) of (g_n^{k-1}) such that $\delta(g_n^k) < \varepsilon (g_n^{k-1}) + 2^{-k}$. Putting $g_n = g_n^*$ for each n, we have that (g_n) is a block of (f_n) which satisfies $\delta(g_n) \geq \varepsilon(g_n)$.

We use this sequence (g_n) to pick a sequence (ω_n) in B_x equivalent to the usual basis of l_1 . Let $\delta = \delta(g_n) = \varepsilon(g_n)$ and pick $\varepsilon < \delta/2$. Then there exists $\omega_1 \in B_{X}$ and an infinite subset A_{ϕ} of N such that $\delta - \varepsilon < g_n(\omega_1)$ for $n \in A_{\phi}$.

Assume now that we have picked $\omega_1, \dots, \omega_m \in B_{x}$ and infinite subsets A_{φ} of N for all $\varphi \in T$, $|\varphi| = n$, $n = 1, \dots, m - 1$ to satisfy

(1) $A_{\varphi,0} \cup A_{\varphi,1} \subset A_{\varphi}$ for all $\varphi, 0 \leq |\varphi| \leq m - 2;$

(2) $g_k(\omega_n) > \delta - \varepsilon$ if $k \in A_{\varphi,0}$ for some $\varphi, |\varphi| = n - 2$; and $g_k(\omega_n) < -\delta + \varepsilon$ if $k \in A_{\varphi,1}$ for some $\varphi, |\varphi| = n - 2$.

We want to pick $\omega_{m+1} \in B_{X}$ and infinite subsets A_{φ} of N for all φ , $|\varphi| = m$ to satisfy (1) and (2) .

For all φ , $|\varphi| = m - 1$, choose infinite disjoint subsets A ζ_0 and A ζ_{+1} of A_{φ}, and enumerate $A'_{i,j} = \{n_k^{\varphi_i}\}\$ for $i = 0, 1$. Consider the block of (g_k) whose k th term is

$$
\frac{1}{2^m}\sum_{|\varphi|=m-1} (g_{n_k}^{\varphi,0}-g_{n_k}^{\varphi,1}).
$$

Let $0 < \varepsilon' < \varepsilon/(2^{m+1}-1)$. Then there exists $\omega_{m+1} \in B_{X}$ so that for all but finitely many k,

$$
(\alpha) \qquad \delta-\varepsilon' < \frac{1}{2^m} \sum_{|\varphi|=m-1} \left(g_{n_k}^{\varphi,0} - g_{n_k}^{\varphi,1} \right) \left(\omega_{m+1} \right).
$$

Also, for all but finitely many k, all $| \varphi | = m - 1$ and $i = 0$ or 1,

$$
|g_{n_k}^{\varphi,i}(\omega_{m+1})|<\delta+\varepsilon'.
$$

A simple calculation shows that for all k satisfying (α) and (β),

$$
g_{n_k}^{\varphi,0}(\omega_{m+1}) > \delta - (2^{m+1}-1) \varepsilon'
$$

and

$$
g_{n_k}^{\varphi,1}(\omega_{m+1})<-\delta+(2^{m+1}-1)\,\varepsilon'.
$$

We will prove this for a distinct ψ , 0, the proof for ψ , 1 being the same. If $g_{n_k}^{\psi,0}(\omega_{m+1}) \leq \delta - (2^{m+1}-1) \varepsilon'$, then

$$
\delta - \varepsilon' < \frac{1}{2^m} \sum_{|\varphi| = m - 1} (g_{n_k}^{\varphi, 0} - g_{n_k}^{\varphi, 1})(\omega_{m+1})
$$

= $2^{-m} (g_{n_k}^{\psi, 0}(\omega_{m+1}) - g_{n_k}^{\psi, 1}(\omega_{m+1}) + \sum_{|\varphi| = m - 1} (g_{n_k}^{\varphi, 0}(\omega_{m+1}) - g_{n_k}^{\psi, 1}(\omega_{m+1}))$

$$
\langle 2^{-m} (\delta - (2^{m+1} - 1) \varepsilon' + (\delta + \varepsilon') + (2^m - 2)(\delta + \varepsilon'))
$$

= 2^{-m} (2^m \delta - (2^{m+1} - 2^m) \varepsilon')
= \delta - \varepsilon',

which contradicts the choice of ω_{m+1} .

Put $A_{\varphi,0} = \{n_k : g_{n_k}^{\varphi,0}(\omega_{m+1}) > \delta - \varepsilon\}$ and $A_{\varphi,1} = \{n_k : g_{n_k}^{\varphi,1}(\omega_{m+1}) < -\delta + \varepsilon\}$. Since $(2^{m+1}-1)\varepsilon' < \varepsilon$, $A_{\varphi,0}$ and $A_{\varphi,1}$ are infinite subsets of N for all $\varphi, |\varphi| = m - 1$. This completes the induction.

The following easy argument shows that the sequence (ω_k) is $(\delta - \varepsilon)$ equivalent to the usual basis of l_1 . Let n, and scalars t_1, \dots, t_n with $t_1 \ge 0$ be given. Let

$$
u_{n} = \begin{cases} 1 & \text{if } i \neq i+1 \geq 0 \\ 0 & \text{if } i \neq i < 0 \end{cases} \quad i = 1, 2, \dots, n-1,
$$

and set $\varphi = (\varepsilon_1,\dots, \varepsilon_{n-1})$. Then if $g = g_{n_k}^*$ for some $n_k^* \in A_{\varphi}$,

$$
g(\omega_i) > \delta - \varepsilon \qquad \text{if} \quad t_{i+1} \geq 0
$$

and

$$
g(\omega_i) < -\delta + \varepsilon \quad \text{if} \quad t_{i+1} < 0.
$$

Hence, $\|\sum_{i=1}^n t_i \omega_i\| \ge \sum_{i=1}^n t_i g(\omega_i) > (\delta - \varepsilon) \sum_{i=1}^n |t_i|$, so (ω_k) is equivalent to the usual basis of l_1 . This completes the proof of Theorem 1 (a).

PROOF OF (b) OF THEOREM 1. For this part of the proof, let us adopt the following conventions: We will denote infinite sequences in X^* by the capital letters M and N. A sequence M_1 is almost contained in M_2 (denoted $M_1C_4M_2$) if $M_1 \backslash M_2$ is finite. For a sequence M in B_{x*} , M' denotes the set of weak^{*} accumulation points of M, and hull* (M') the weak* closed convex hull of M'.

For any sequence M in B_x , define $D(M) = \sup \inf_{b \in \Lambda} |f_0(x) - f_1(x)|$ where the sup is taken over all M_0 , $M_1 \subset A M$, $f_i \in \text{hull}^*(M'_i)$ for $i = 0, 1$, and $x \in B_x$.

The following consequence of the separation theorem will be needed.

LEMMA 5. Let N be a sequence in B_x . with no weak $*$ converging subsequence. *Then if M* is any subsequence of *N*, $D(M) > 0$.

PROOF. Pick $g_0, g_1 \in M'$ with $g_0 \neq g_1$. Let V_0 , V_1 be disjoint weak* closed convex neighborhoods of g_0 , g_1 respectively. For $i=0,1$, put $M_i =$ ${m \in M : m \in V_i}$. Then both M_i are infinite, both hull* (M'_i) are weak* compact and convex, and hull* $(M'_0) \cap \hbox{hull}^*(M'_1) = \emptyset$. The separation theorem yields an $x \in B_x$ and a $\delta > 0$ such that $f_0(x) - \delta > f_1(x)$ for all $f_i \in \text{hull}^*(M')$, $i = 0, 1$, and this implies $D(M) > \delta$. Q.E.D. Vol. 28, 1977 **BANACH SPACES** 329

Again, let N be a sequence in B_x , with no weak^{*} converging subsequence. For each $\varphi \in T$, pick a subsequence N_{φ} of N, and infinite $N_{\varphi,i} C_a N_{\varphi}$ ($i = 0, 1$), and $x_{\varphi} \in B_{\chi}$ such that $(f_0 - f_1)(x_{\varphi}) \geq \frac{1}{2}D(N_{\varphi})$ for any $f_i \in \text{hull}^*(N_{\varphi,i}), i = 0, 1$. (This selection can be accomplished by induction on sequences of length n .)

We claim that there exists a $\varphi_0 \in T$ and a $\delta > 0$ such that, for all $\psi \ge \varphi_0$, $D(N_{\psi}) \ge 2\delta$. If not, there exists a sequence $\varphi_1, \varphi_2, \cdots$ in T such that $\varphi_1 \le \varphi_2 \le$ \cdots and $D(N_{\varphi_k})$ < 1/k for all k. Let $M = \{m_1, m_2, \cdots\}$ be a sequence of distinct elements in N such that $m_k \in \bigcap_{j=1}^k N_{\varphi_j}$ for each k. Then $M \subset \{N_{\varphi_k}\}$ for each k, and by Lemma 4, $D(M) > 0$. But $D(N_{\varphi_k}) \ge D(M)$ for all k, which is a contradiction.

So, by reindexing if necessary, we can assume that $\varphi_0 = \emptyset$, i.e., that for all $\varphi \in T$, $|(f_0 - f_1)(x_{\varphi})| \geq \delta$ if $f_i \in \text{hull}^*(N'_{\varphi,i}), i = 0, 1$. Let $X_0 = [\{x_{\varphi} : \varphi \in T\}]$. Since T is countable, X_0 is separable. To show that X_0^* is nonseparable, for each $\xi \in \Delta$ pick one element $f_{\xi} \in \bigcap_{j=0}^{\infty} N'_{\xi_j}$ where (φ_i) is the unique sequence in T generated by ξ . (This intersection is non-empty by compactness.)

Now, let $\hat{f}_{\xi} = f_{\xi|X_0}$. Given distinct $\xi, \eta \in \Delta$, let (φ_i) and (ψ_i) be the sequences in T corresponding to ξ , η respectively. Let $j_0 = \max\{j : \varphi_j = \psi_j\}$ and $\varphi = \varphi_{j_0}$. Then without loss of generality, we can assume that $f_{\xi} \in N'_{\varphi,0}$ and $f_{\eta} \in N'_{\varphi,1}$. But then, $\|\hat{f}_{\epsilon} - \hat{f}_{\eta}\| \ge (f_{\epsilon} - f_{\eta})(x_{\varphi}) \ge \delta$. Since Δ is uncountable, this shows that X_0^* is nonseparable. Q.E.D.

PROOF OF COROLLARY 1. By Rosenthal's theorem [7], if B_x is not weak^{*} sequentially compact, then l_1 embeds into X^* . Now if l_1 does not embed into X, then by Theorem 1 (a), B_{x} contains a weak^{*} null sequence which is equivalent to the unit vector basis of l_1 . Thus by remark III.1 of [3], c_0 is isomorphic to a quotient of X.

Added in proof. E. Odell and the first named author have constructed a Banach space not containing l_1 whose dual ball is not weak* sequentially compact.

REFERENCES

1. J. Hagler, *A counterexample to several questions about Banach spaces,* Studia Math., to appear.

2. R. Haydon, *On Banach spaces which contain* $l'(\tau)$ *and types of measures on compact spaces,* preprint.

3. W. B. Johnson and H. P. Rosenthal, *On w *-basic sequences and their application to the study of Banach spaces,* Studia Math. 43 (1972), 77-92.

3a. B. Josefson, *Weak sequential convergence in the dual of a Banach space does not imply norm convergence,* Ark. Mat. 13 (1975), 79-89.

4. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces,* Springer lecture notes 338.

5. A. Nissenzweig, *w* sequential convergence,* Israel J. Math. 22 (1975), 266-272.

6. A. Pe*lczyński, On Banach spaces containing L*₁(μ), Studia Math. 30 (1968), 231-246.

7. H. P. Rosenthal, *A characterization of Banach spaces containing* ¹, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.

8. C. Stegall, The *Radon-Nikodym property in conjugate Banach spaces,* Trans. Amer. Math. Soc. 206 (1975), 213-223.

CATHOLIC UNIVERSITY OF AMERICA AND THE OHIO STATE UNIVERSITY