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ON BANACH SPACES WHOSE
DUAL BALLS ARE NOT WEAK*
SEQUENTIALLY COMPACT

BY
J. HAGLER AND W. B. JOHNSON'

ABSTRACT

THEOREM 1. Let X be a Banach space. (a) If X* has a closed subspace in
which no normalized sequence converges weak* to zero, then /, is isomorphic to
a subspace of X. (b) If X* contains a bounded sequence which has no weak*
convergent subsequence, then X contains a separable subspace whose dual is
not separable.

The common feature in the proofs of (a) and (b) of Theorem 1 is a
diagonalization argument similar to that of Nissenzweig [5]. Nissenzweig’s main
result, that every conjugate Banach space contains a normalized sequence which
weak™ converges to zero, is a consequence of Corollary 1. (This result was also
proved by Josefson [3a].)

CoroLLary 1. Ifl, is isomorphic to a subspace of X*, or if the unit ball of X*
is not weak * sequentially compact, then either c, is isomorphic to a quotient of X or
l, is isomorphic to a subspace of X.

One derives Nissenzweig’s result from Corollary 1 as follows: If X™* contains
no normalized weak* null sequence, then the unit ball of X* is not weak*
sequentially compact. Thus either ¢, is a quotient of X, or, if /, embeds into X, I,
is a quotient of X by a result of Pe}czynski’s [6]. At any rate, X has a separable
quotient, which implies that X* contains a normalized weak* null sequence.

In view of a theorem of Stegall [8], we can restate Theorem 1 (b) as

CororLaRry 2. If X* has the Radon-Nikodym property, then the unit ball of
X* is weak™ sequentially compact.
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Haydon [2] has recently given an example of a compact Hausdorff space K
which is not sequentially compact such that [,(I') does not embed in C(K) for
any uncountable set I'. It is not known, however, if the hypothesis of Theorem 1
(b) implies that I, embeds in X.

NoraTioN. Unexplained notation is standard and can be found in 1] or [4].

All Banach spaces are real. For a Banach space X, Bx denotes the closed unit
ball of X. If D is a subset of X, then [D] is the closed linear span of the set D in
X. If X and Y are Banach spaces, then (X @ Y), is the Banach space
(XX Y| ), where [[(x, )l =[x [[+]y].

Next, let T denote the set of finite sequences of 0’s and 1's. For ¢ € T, | ¢ |
denotes the length of the sequence ¢. If ¢, ¢ € T, then ¢ = ¢ if |@ |= | ¢| and
the first | ¢ | terms of ¢ form the sequence . If [¢ | =n and i =0 or 1, then ¢, i
is the unique sequence of length n + 1 whose first n terms form the sequence .
Also, let A denote the set of infinite sequences of 0’s and 1’s. Then to each ¢ € A
we can associate a unique sequence (¢.) in T, where for each n = 0, the first n
terms of ¢ form the sequence ¢.

ProoF oF (a) oF THEOREM 1. Let (f.) be a normalized basic sequence in X*
such that no normalized sequence in [f,] converges weak* to zero. Then by
Rosenthal’s characterization of [,-sequences [7], we can assume that (f.) is
equivalent to the usual basis of /..

First, we may assume that (f.) is isometrically equivalent to the usual basis of
l,. To see this, observe that [, imbeds in X if and only if /, imbeds in (X & c).. If
(h.) denotes the usual basis for I, = ¢, then the sequence (f., h,) in (X @ co)7T is
isometrically equivalent to the usual basis of I/, and there is no normalized
sequence in [(f,, h.)] which tends weak* to zero.

Now, let (g.) be any sequence in a Banach space isometrically equivalent to
the usual basis of /;. Then a sequence (h,) is called an /,-normalized block of (g.)
(in short, a block) if h, = Z,ca,a:g; where the A, are pairwise disjoint finite
subsets of the integers and Z,ca, | a: | = 1. It is clear that every block (g.) of (h,)
is isometrically equivalent to the usual basis of /,.

For a block (g.) of our original sequence (f.) in Bx-, define 8(g.)=
supx limsup, g.(x) where the sup is taken over all x € Bx. Also define

e(g.) =inf{8(h.):(h,) isablockof (g.)}.

It is clear that 8(g.)>0 and if (h,) is a block of (g.), then §(h,)=< 8(g.) and
e(h.) = e(g.).
We claim that there exists a block (g.) of (f.) such that £(g.)= 8(g.), i.e.
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8(h.) = 8(g.) for any block (h.) of (g.). Indeed, we can pick a block (g.) of (f.)
such that 8(g!) < e(f.)+27", and, inductively, we can pick blocks (g5) of (gk™)
such that 8(g%) < e(g%™")+ 27" Putting g. = g for each n, we have that (g.)is a
block of (f,) which satisfies 8(g,) = e(gn)-

We use this sequence (g,) to pick a sequence (w,) in Bx equivalent to the
usual basis of /. Let & = 8(g.) = £(g.) and pick ¢ < §/2. Then there exists
w; € Bx and an infinite subset A, of N such that § — ¢ < g.(w,) for n € A,.

Assume now that we have picked wi, "', w. € Bx and infinite subsets A,
of Nforall g €T,|¢|=n n=1,---,m—1 to satisfy

(1) A,oUA, CA, forall o, 0= ¢ |=m—2;

Q) g(w,)>8-¢eifk €A, forsome ¢, |¢|=n—2;and g(w,)< — 8+ ¢ if
k € A,, for some ¢, |¢|=n—2.

We want to pick wn.: € Bx and infinite subsets A, of N for all ¢,| ¢ |=m to
satisfy (1) and (2).

For all ¢, | ¢ | = m — 1, choose infinite disjoint subsets A ,oand A, of A,, and
enumerate A ;= {n{’} for i =0, 1. Consider the block of (g.) whose kth term is

@0 @

1
o 2 (8w —gn)
lel=m-1

Let 0<eg'<g/(2™*"—1). Then there exists w.., € Bx so that for all but finitely
many k,

1
() — <2—m 'E (8~ 8m) (@ns).
le
Also, for all but finitely many k, all |¢|=m —1and i =0 or 1,

(8) g (@) <8+ 6.
A simple calculation shows that for all k satisfying («) and (8),

g (@me)>8 - (2™ = 1)’
and
g (Onn)< =8+ Q2™ = 1)g".

We will prove this for a distinct 4,0, the proof for ¢,1 being the same. If
gl (W) =8 — (2" = 1)¢’, then

1 00 _ @
b-e'<zm 3 (gn—gn)(wnn)

=m-—1

= 2" (g (@n) = g (@ne) 3 (gr (@) = g (0n))

e FEY
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<2mB-Q" -1+ B+ )+ 2" -2)(5+ ")
=26 - (27 -2m)e))
=8-¢',
which contradicts the choice of wm..
Put A,o={r:gn(wns1)>8—£}and A, = {n : g0 (wna1) < ~ 8 + £}. Since

(2"*'=1)e'<e¢, A,pand A, are infinite subsets of N for all ¢, | ¢ | = m — 1. This
completes the induction.

The following easy argument shows that the sequence (wy) is (8 — £) equiva-

lent to the usual basis of /,. Let n, and scalars ¢,, - - -, ¢, with 7, = 0 be given. Let
_ (1 if t,20 . _ o
e ST L RN
and set ¢ = (g, ", £,,). Then if g = g, for some n; € A,,

g(w,')>8'“8 lf t.-+|§0
and
glw)< —8+¢ if 1.,,<0.

Hence, |2t |2 2, tg(w)> (8 — €)Z/-i| |, so (w) is equivalent to the
usual basis of /,. This completes the proof of Theorem 1 (a).

ProoF oF (b) oF THEOREM 1. For this part of the proof, let us adopt the
following conventions: We will denote infinite sequences in X* by the capital
letters M and N. A sequence M, is almost contained in M, (denoted M,C. M) if
M\M; is finite. For a sequence M in Bx-, M’ denotes the set of weak*
accumulation points of M, and hull* (M’) the weak* closed convex hull of M".

For any sequence M in By, define D (M) = supinf;,,, | fo(x) — fi(x)| where the
sup is taken over all My, M\C, M, f, € hull*(M)) for i =0,1, and x € Bx.

The following consequence of the separation theorem will be needed.

LEMMA 5. Let N be a sequence in Bx- with no weak * converging subsequence.
Then if M is any subsequence of N, D(M)>0.

Proor. Pick go, g1 € M’ with g,# g,. Let V,, V, be disjoint weak* closed
convex neighborhoods of g, g respectively. For i=0,1, put M =
{m €M :m €€V} Then both M, are infinite, both hull* (M}) are weak*
compact and convex, and hull* (M) Nhull*(M}) = . The separation theorem
yields an x € Bx and a 6 >0 such that fy(x)— 8 > f,(x) for all f, € hull* (M),
i =0,1, and this implies D(M)> 8. Q.E.D.



Vol. 28, 1977 BANACH SPACES 329

Again, let N be a sequence in Bx- with no weak* converging subsequence. For
each ¢ € T, pick a subsequence N, of N, and infinite N,;C. N, (i =0,1), and
x, € Bx such that (f,— f1)(x,)Z3iD(N,) for any f, € hull*(N,,), i = 0,1. (This
selection can be accomplished by induction on sequences of length n.)

We claim that there exists a ¢o€ T and a 8§ >0 such that, for all ¥ = ¢,,
D(N,)z= 23 If not, there exists a sequence ¢, ¢, - in T such that ¢, = ¢, =
-+ and D(N,,)<1/k for all k. Let M = {m, m,, -} be a sequence of distinct
elements in N such that m, € ﬂle N,, for each k. Then MC, N,, for each k, and
by Lemma 4, D(M) > 0. But D(N,, )= D (M) for all k, which is a contradiction.

So, by reindexing if necessary, we can assume that ¢, =, i.e., that for ali
e €T, |(fo—fi)(x,)| 28 if fi€hull*(N,), i=0,1. Let X,=[{x,:¢ €T}
Since T is countable, X, is separable. To show that X7 is nonseparable, for each
£ € A pick one element f, € M, N, where (¢;) is the unique sequence in T
generated by £ (This intersection is non-empty by compactness.)

Now, let f; = f;x,. Given distinct £ n € A, let (¢;) and (i) be the sequences in
T corresponding to & n respectively. Let j, = max{j : ¢; = {;} and ¢ = ¢,. Then
without loss of generality, we can assume that f; € N,, and f, € N_,. But then,
If = filZ (f: - f,)(x,)= 8. Since A is uncountable, this shows that X3 is
nonseparable. Q.E.D.

ProoF oF CoroLLARY 1. By Rosenthal’s theorem [7], if Bx- is not weak*
sequentially compact, then /, embeds into X *. Now if /; does not embed into X,
then by Theorem 1 (a), Bx- contains a weak™* null sequence which is equivalent
to the unit vector basis of /,. Thus by remark II1.1 of [3], ¢, is isomorphic to a
quotient of X.

Added in proof. E. Odell and the first named author have constructed a
Banach space not containing !, whose dual ball is not weak* sequentially
compact.
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